Rejection mechanisms for contaminants in polymeric reverse osmosis membranes
نویسندگان
چکیده
Despite the success of reverse osmosis (RO) for water purification, the molecular-level physicochemical processes of contaminant rejection are not well understood. Here we carry out non-equilibrium molecular dynamics (NEMD) simulations on a model RO membrane to understand the mechanisms of transport and rejection of both ionic and inorganic contaminants in water. While it is commonly presumed that the contaminant rejection rate is correlated with the dehydrated solute size, this approximation does not hold for the organic solutes and ions studied. In particular, the rejection of urea (2.4 Å radius) is higher than ethanol (2.6 Å radius), and the rejections for organic solutes (2.2-2.8 Å radius) are lower than Na+ (1.4 Å radius) or Cl(2.3 Å radius). We show that this can be explained in terms of the solute accessible free volume in the membrane and the solute-water pair interaction energy. If the smallest open spaces in the membrane’s molecular structure are all larger than the solute size including its hydration shell, then the solute-water pair interaction energy does not matter. However, when the open spaces in the polymeric structure are such that solutes have to shed at least one water molecule to pass through a portion of the membrane molecular structure, as occurs in RO membranes, the pair interaction energy governs solute rejection. The high pair interaction energy for water molecules in the solvation shell for ions makes the water molecules difficult to shed, thus enhancing the rejection of ions. On the other hand, the organic solute-water interaction energies are governed by the water molecules that are hydrogen bonded to the solute. While these hydrogen bonds have pair interaction energies that are much larger than that of the nonhydrogen bonded water molecules in the solute solvation shell, they are significantly less the ion-water pair interaction energy. Thus, organic solutes more easily shed water molecules than ions to pass through the RO membrane. Since urea molecules have more hydrogen-bonding sites than alcohol molecules, urea sheds
منابع مشابه
Supporting Polyvinylchloride Polymeric Blend Membrane with Coated Woven Fabric
Blend reverse osmosis membranes were fabricated using polyvinyl chloride (PVC) with cellulose acetate (CA) as polymer blends. Tetrahydrofuran (THF) and N-Methyl-2-pyrrolidone (NMP) were used as solvents. The membrane polymer solution was cast on a coated woven fabric support material. The prepared membranes have been characterized by SEM and mechanical properties. SEM r...
متن کاملEffects of feed and draw solution temperature and transmembrane temperature difference on the rejection of trace organic contaminants by forward osmosis
The effects of feed and draw solution temperature and transmembrane temperature difference on the rejection of 12 trace organic contaminants (TrOCs) by two forward osmosis (FO) membranes were investigated. The membrane structure parameter (S) and the reverse salt (NaCl) flux selectivity (RSFS) were constant over the temperature range of 20-40 1C, suggesting that within this range, the solution ...
متن کاملEffect of Organoclay on the Performance of Reverse Osmosis Membrane
This study investigated the effect of Cloisite15A (C15A) organoclay in the substrate layer on the performance of reverse osmosis (RO) membranes. The substrate of the RO membranes was modified using different loading of C15A (ranging from 0.3 - 0.7 wt%) within polysulfone (PSf) substrate and the polyamide (PA) selective layer was formed on the top. Effect of the modified substrate layer on the w...
متن کاملSeawater Desalination by using Nanofiltration (NF) and Brackish Water Reverse Osmosis (BWRO) Membranes in Sequential Mode of Operation
In this study, the applicability of nanofiltration (NF) membranes as a pretreatment prior to reverse osmosis (RO) in seawater desalination was investigated. The membranes used wereNF270 and NF90 as the NF membranes, while the brackish water (BW) RO membrane BW30 was used as the RO membrane. In desalination tests, permeates of the NF membraneswere collected and used as the feed to th...
متن کاملPerformance and Structure of Thin Film Composite Reverse Osmosis Membranes Prepared by Interfacial Polymerization in the Presence of Acid Acceptor
During interfacial polymerization (IP) reaction between m-phenylenediamine (MPDA) and trimesoyl chloride (TMC), a by-product, i.e. hydrochloric acid can produce. This produced acid diffuses back in aqueous phase and protonates MPDA and reduces its reactivity that results in lowering of polymer yield and performance of membrane. Further, for getting consistency in reverse...
متن کامل